Topic 6: Measuring Outcomes

Rachel Richesson, PhD
Duke University School of Nursing
Lesley Curtis, PhD
Duke Clinical Research Institute
Outline

• Definitions
• The electronic data puzzle
• Caveats for EHR data in research
• Possible sources of error
• Data quality assessment recommendations
• Clinical phenotypes
• Reporting guidelines for PCTs
• Patient-reported outcomes
• Conclusions & recommendations
Outcomes vs endpoints

- Direct
- Surrogate
- Composite
Where is the signal?

- EHR (laboratory values, treatments, etc)
- Claims data (does the event generate a bill?)

![Venn Diagram]

- Inpatient and Outpatient EHR
- Payer Claims
- Overlap
Reality is not straightforward

Source: Greg Simon, MD, Group Health Research Institute
Data sources for endpoints in PCTs

“The first challenge in using big biomedical data effectively is to identify what the potential sources of health care information are and to determine the value of linking these together.”

Finding the Missing Link for Big Biomedical Data
(See Figure 1)

Griffin M. Weber, MD; Kenneth D. Mandl, MD, MPH; Isaac S. Kohane, MD, PhD

Data sources for endpoints in ePCTs

• EHR or ancillary health information systems
• Patient report
• Patient measurement
Caveats when using EHR data for endpoints (selected)

- Data may be transformed/coded for purposes other than research & clinical care
Caveats when using EHR data for research (selected)

- Data captured in clinical notes may not be available
- EHRs are often highly customized
- EHRs may present multiple sources of similar data

Source: Hersh WR et al. Med Care 2013;51:S30-S37.
Caveats when using EHR data for research (selected)

“EHRs may present multiple sources of data that affect data provenance.”

Caveats for the Use of Operational Electronic Health Record Data in Comparative Effectiveness Research (See Figure 1)

William R. Hersh, MD, Mark G. Weiner, MD, Peter J. Embi, MD, MS, Judith R. Logan, MD, MS, Philip R.O. Payne, PhD, Elmer V. Bernstam, MD, MSE, Harold P. Lehmann, MD, PhD, George Hripcsak, MD, MS, Timothy H. Hartzog, MD, James J. Cimino, MD, and Joel H. Saltz, MD, PhD

Med Care. 2013 Aug; 51(8 0 3): S30–S37
doi: 10.1097/MLR.0b013e31829b1dbd
Caveats when using EHR data for research (selected)

- EHRs often do not tell a complete story

Source: Hersh WR et al. Med Care 2013;51:S30-S37.
Longitudinal data linkage

• To fully capture *all* care—complete longitudinal data—linking research & insurance claims data is often necessary

• Without explicit consent, getting longitudinal data from an insurance carrier can be an insurmountable hurdle, both technically and legally

Adaptable
Enabling pragmatic research: escreening, eenrollment & efollow-up

ADAPTABLE Enrollee

Baseline Data

Call FOLLOW-UP
- Patient Reported Outcomes
- Medication use
- Health outcomes

OR

Adaptable
The Aspirin Study

Portal FOLLOW-UP
- Patient Reported Outcomes
- Medication use
- Health outcomes

PCORNet Coordinating Center FOLLOW-UP
- Via Common Data Model
- Longitudinal health outcomes

CMS, Payer FOLLOW-UP
- Longitudinal health outcomes
Choosing and specifying endpoints in ePCTs

- Endpoints and outcomes need to be available as part of routine care

Easy
- Acute MI
- Broken bone
- Hospitalization

Hard
- Suicide attempts
- Gout flares
- Silent MI
- Early miscarriage
Key questions for choosing endpoints

Is the outcome medically significant such that a patient would seek care?

- Does it require hospitalization?
- Is the treatment generally provided in inpatient or outpatient settings?
- Will the endpoint be medically attended?
Endpoints in ePCTs

• Endpoints should be meaningful to providers and patients
 • MACE vs myocardial infarction
 • Good example of a blood test vs a clinical event
• More pragmatic endpoints …
 • Matter to providers and patients
 • Are captured reliably as part of routine clinical care
 • Do not require central adjudication
 • Are shorter-term in nature

Choosing an endpoint that is not captured reliably as part of routine clinical care or impedes the clinical workflow is not pragmatic!
Data is a surrogate for clinical phenomena

Adapted from Hripcsak et al. 2009
Key questions for using EHR data

What is the phenomenon you are trying to identify or measure?

In what type of health care activity, event, documentation or data value could a “signal” be detected?

What are the sources of error?

How can you assess and reduce that error?
Data quality assessment

- Identify variation between populations at different sites or study groups
- Recommend formal assessment of accuracy, completeness & consistency for key data
- Data quality should be described, reported & informed by workflows

Electronic Health Records

Co-Chairs: Rachel Richesson, Greg Simon
NIH Representatives: Jerry Sheehan, Barbara Wells
Project Manager: Jesse Hickerson

Electronic Health Records: Design, Conduct, Dissemination

Products and Publications | Presentations

The ability to harness electronic health data is transforming the way clinical research is conducted. The Electronic Health Records (EHR) Core's goal is to facilitate multisite research collaborations between investigators and data stewards. Core members have expertise in data models, data standards and quality, algorithms, and approaches to define clinical phenotypes, extract information, define endpoints, and discover errors in data from healthcare systems.

The secondary use of electronic health record (EHR) data for clinical research requires not only an understanding of data representation, exchange standards, and the influence of...
Case example: Collaborative Care for Chronic Pain in Primary Care (PPACT)

PROs were needed, but were not standardly collected across diverse regions.
Case example: PPACT

- Project leadership worked with national Kaiser to create buy-in for a common instrument
- Local IT built it within each region
- A multi-tiered approach supplemented the clinically collected PRO data at 3, 6, 9, 12 months
- A follow-up phone call by research staff was necessary to maximize data collection at each time point
Outcomes measured via direct patient report

- Patient-reported outcomes (PROs) often best way to measure quality-of-life
- Challenges
 - Not routinely & consistently used in clinical care
 - Not regularly recorded in EHR
- Need mechanism to collect PROs
Mobile devices

• Smartphones, tablet computers, and portable, implantable, or wearable medical devices (mHealth)
 • Some mHealth devices transmit data to a data warehouse every night
 • Largely considered imperfect measures
• Patient-facing mobile phone apps can be used in PCT for passive or active surveillance
Administration

AHRQ Challenge to Focus on PROs in EHRs

According to a [Federal Register notice](https://www.federalregister.gov) on December 26, 2017, AHRQ is going to develop user-friendly technical tools to collect and integrate patient-reported outcome data in electronic health records or other health information technology products. AHRQ says that “the limited inclusion of PRO data in electronic health records (EHRs) and other health information technology (IT) solutions reduces the understanding and use of the patient's perspective in research and clinical care… Moreover, standards do not exist for collecting and integrating PRO data into health IT systems, thereby limiting the ability to easily share these data across health systems for research or other purposes including quality improvement.” Mark your calendars, as AHRQ has targeted the Fall of 2018 for these challenges.
Consider the reporting guidelines when choosing outcomes

- Clearly define primary & secondary outcome measures
- Report methods used to enhance the quality of measurements
- Explain how selected outcomes & length of follow-up are important to stakeholders

NIH Collaboratory

Rethinking Clinical Trials

Reporting Pragmatic Clinical Trials

Introduction
Transparent reporting of clinical trials is essential for helping researchers, clinicians, patients, and other stakeholders understand the validity and reliability of the findings. Many have suggested that the quality of trial reporting is suboptimal and have sought consensus on the key elements of transparent reporting. To address this, a group of clinical trial methodologists and journal editors developed the **CONSORT (Consolidated Standards of Reporting Trials)** Statement. CONSORT is intended to improve transparency and dissemination of trial findings by providing a checklist and guidance for authors. The original CONSORT statement focused on the reporting of standard, two-group randomized controlled trials (RCTs) that compare an intervention with a control. Over the years, CONSORT has been expanded for clarity and revised, most recently in 2010, and now includes several official extensions to account for variations in trial design, interventions, and data (described in Appendix A).

Pragmatic Clinical Trials
The **NIH Health Care Systems Research Collaboratory** supports the design, execution, and dissemination of a set of **Demonstration Projects**, which are pragmatic clinical trials (PCTs) that address questions of major public health importance and are part of an effort to create a new infrastructure for collaborative research within healthcare systems. In contrast to RCTs, which elucidate a mechanical or biological process, PCTs are "designed for the primary purpose of informing decision makers regarding the comparative balance of benefits, burdens and risks of a biomedical or behavioral health intervention at the individual or population level." To be clear, PCTs are on a continuum with traditional RCTs, and there are aspects of PCTs that make them either more explanatory or more pragmatic (described in Appendix B). Generally, a PCT is more pragmatic if the data are collected during routine clinical care (usually through the electronic health record [EHR]); if there is some flexibility in the delivery of and adherence to the intervention; if a real-world population is included; and if the outcomes are relevant to patients and other decision makers.

Purpose of this Template
This template is intended to help authors with the transparent reporting of their PCT. While we have looked to the CONSORT guidance and extensions wherever possible, new areas are emerging related to PCTs that the CONSORT checklist and guidance do not address. These include reporting around the secondary use of EHR data, wider stakeholder and health system involvement in the conduct of PCTs, and special ethical and regulatory considerations for PCTs.

Publication Date: September 1, 2016
This working guidance document was developed by the NIH Collaboratory’s Coordinating Center staff, supported by the **NIH Common Fund**, through a cooperative agreement (U54 41007748) from the Office of Strategic Coordination within the Office of the NIH Director. The views presented here are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health.
Defining outcomes with clinical phenotypes

“A comparison of phenotype definitions for diabetes mellitus
(See Figure 1 and Table 1)

Rachel L Richesson, Shelley A Rusincovitch, Douglas Wixted, Bryan C Batch, Mark N Feinglos, Marie Lynn Miranda, W Ed Hammond, Robert M Califf, Susan E Spratt

J Am Med Inform Assoc, Volume 20, Issue e2, 1 December 2013, Pages e319–e326; doi.org/10.1136/amiajnl-2013-001952

“Differences across phenotype definitions can potentially affect their application in healthcare organizations and the subsequent interpretation of data.”
<table>
<thead>
<tr>
<th>Title</th>
<th>Groups</th>
<th>Institutions</th>
<th>Data and Methods</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial Fibrillation - Demonstration Project</td>
<td>Vanderbilt - SD/RD Group</td>
<td>Vanderbilt University</td>
<td>CPT Codes, ICD 9 Codes, Natural Language Processing</td>
<td>Final</td>
</tr>
<tr>
<td>Cardiac Conduction (QRS)</td>
<td>eMERGE Phenotype WG</td>
<td>Vanderbilt University</td>
<td>CPT Codes, ICD 9 Codes, Laboratories, Medications, Natural Language Processing</td>
<td>Final</td>
</tr>
<tr>
<td>Cataracts</td>
<td>eMERGE Phenotype WG</td>
<td>Marshfield Clinic Research Foundation</td>
<td>CPT Codes, ICD 9 Codes, Medications, Natural Language Processing</td>
<td>Final</td>
</tr>
<tr>
<td>Clopidogrel Poor Metabolizers</td>
<td>Denny's Group at Vandy, VESSPA - Vanderbilt Electronic Systems for Pharmacogenomic Assessment</td>
<td></td>
<td>CPT Codes, ICD 9 Codes, Laboratories, Medications, Natural Language Processing</td>
<td>Final</td>
</tr>
<tr>
<td>Crohn's Disease - Demonstration Project</td>
<td>Vanderbilt - SD/RD Group</td>
<td>Vanderbilt University</td>
<td>ICD 9 Codes, Medications, Natural Language Processing</td>
<td>Final</td>
</tr>
<tr>
<td>Dementia</td>
<td>eMERGE Phenotype WG</td>
<td>Group Health Cooperative</td>
<td>ICD 9 Codes, Medications</td>
<td>Final</td>
</tr>
<tr>
<td>Diabetic Retinopathy</td>
<td>eMERGE Phenotype WG</td>
<td>Marshfield Clinic Research Foundation</td>
<td>CPT Codes, ICD 9 Codes, Medications, Natural Language Processing</td>
<td>Final</td>
</tr>
<tr>
<td>Drug Induced Liver Injury</td>
<td>eMERGE Phenotype WG</td>
<td>Columbia University</td>
<td>ICD 9 Codes, Laboratories, Medications, Natural Language Processing</td>
<td>Final</td>
</tr>
</tbody>
</table>
Pragmatic (trial) informatics: a perspective from the NIH Health Care Systems Research Collaboratory

Rachel L Richesson,1,2 Beverly B Green,3 Reesa Laws,4 Jon Puro,5 Michael G Kahn,6 Alan Bauck,4 Michelle Smerek,7 Erik G Van Eaton,8 Meredith Zozus,9 W Ed Hammond,2 Kari A Stephens,10 and Greg E Simon3

- Competition for IT resources
- Need to optimize clinical data for research
- Only small proportion of research in EHRs
- Need to capture intervention or control activities
- Including standard of care
- Need to enable learning & research activities into EHR functions

https://academic.oup.com/jamia/article/24/5/996/3069877/Pragmatic-trial-informatics-a-perspective-from-the
Important things to know

• Endpoints and outcomes should be meaningful to providers and patients
• Endpoints and outcomes should be relatively easy to collect (ie, pragmatic)
• Researchers do not control the design or data collected in EHR systems
• Good practices for using clinical data in PCTs are based upon scientific principles
• The data available from the EHR may be convenient & pragmatic, but might not actually drive clinical practice or policy if used as endpoints

• Need to make sure that the endpoint that IS conveniently available will also be accepted as one that will be influential for stakeholders when the PCT results are disseminated

• “Plan with Implementation in Mind” (Topic 3)
Important things to do

• Ask questions that the data will support and design trials to minimize new data collection
• Engage EHR and data experts when defining endpoints and outcomes
• Budget for data and systems experts at each site (… and then double it)
• Develop a robust data quality assessment plan to improve value of data and to detect and address data issues
1. What is your primary endpoint?
2. Is that endpoint sufficiently informative for your stakeholders?
3. What challenges do you anticipate in trying to ascertain that endpoint?
4. How might you address those challenges?